Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nonlinear Dyn ; 101(3): 2003-2012, 2020.
Article in English | MEDLINE | ID: covidwho-1906358

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19) has threatened the social and economic structure all around the world. Generally, COVID-19 has three possible transmission routes, including pre-symptomatic, symptomatic and asymptomatic transmission, among which the last one has brought a severe challenge for the containment of the disease. One core scientific question is to understand the influence of asymptomatic individuals and of the strength of control measures on the evolution of the disease, particularly on a second outbreak of the disease. To explore these issues, we proposed a novel compartmental model that takes the infection of asymptomatic individuals into account. We get the relationship between asymptomatic individuals and critical strength of control measures theoretically. Furthermore, we verify the reliability of our model and the accuracy of the theoretical analysis by using the real confirmed cases of COVID-19 contamination. Our results, showing the importance of the asymptomatic population on the control measures, would provide useful theoretical reference to the policymakers and fuel future studies of COVID-19.

2.
Public Health ; 200: 15-21, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401801

ABSTRACT

OBJECTIVES: The COVID-19 pandemic has resulted in an enormous burden on population health and the economy around the world. Although most cities in the United States have reopened their economies from previous lockdowns, it was not clear how the magnitude of different control measures-such as face mask use and social distancing-may affect the timing of reopening the economy for a local region. This study aimed to investigate the relationship between reopening dates and control measures and identify the conditions under which a city can be reopened safely. STUDY DESIGN: This was a mathematical modeling study. METHODS: We developed a dynamic compartment model to capture the transmission dynamics of COVID-19 in New York City. We estimated model parameters from local COVID-19 data. We conducted three sets of policy simulations to investigate how different reopening dates and magnitudes of control measures would affect the COVID-19 epidemic. RESULTS: The model estimated that maintaining social contact at 80% of the prepandemic level and a 50% face mask usage would prevent a major surge of COVID-19 after reopening. If social distancing were completely relaxed after reopening, face mask usage would need to be maintained at nearly 80% to prevent a major surge. CONCLUSIONS: Adherence to social distancing and increased face mask usage are keys to prevent a major surge after a city reopens its economy. The findings from our study can help policymakers identify the conditions under which a city can be reopened safely.


Subject(s)
COVID-19 , Pandemics , Communicable Disease Control , Humans , Masks , Pandemics/prevention & control , SARS-CoV-2 , United States/epidemiology
3.
Nonlinear Dyn ; 106(2): 1149-1167, 2021.
Article in English | MEDLINE | ID: covidwho-871521

ABSTRACT

At present, more and more countries have entered the parallel stage of fighting the epidemic and restoring the economy after reaching the inflection point. Due to economic pressure, the government of India had to implement a policy of relaxing control during the rising period of the epidemic. This paper proposes a compartment model to study the development of COVID-19 in India after relaxing control. The Sigmoid function reflecting the cumulative effect is used to characterize the model-based diagnosis rate, cure rate and mortality rate. Considering the influence of the lockdown on the model parameters, the data are fitted using the method of least squares before and after the lockdown. According to numerical simulation and model analysis, the impact of India's relaxation of control before and after the inflection point is studied. Research shows that adopting a relaxation policy prematurely will have disastrous consequences. Even if the degree of relaxation is only 5% before the inflection point, it will increase the number of deaths by 15.03%. If the control is relaxed after the inflection point, the higher degree of relaxation, the more likely a secondary outbreak will occur, which will extend the duration of the pandemic, leading to more deaths and put more pressure on the health care system. It is found that after the implementation of the relaxation policy, medical quarantine capability and public cooperation are two vital indicators. The results show that if the supply of kits and detection speed can be increased after the control is relaxed, the secondary outbreak can be effectively avoided. Meanwhile, the increase in public cooperation can significantly reduce the spread of the virus, suppress the second outbreak of the pandemic and reduce the death toll. It is of reference significance to the government's policy formulation.

SELECTION OF CITATIONS
SEARCH DETAIL